
Journal of Sound and <ibration (2000) 229(4), 993}1002
doi:10.1006/jsvi.1999.2507, available online at http://www.idealibrary.com on
LETTERS TO THE EDITOR

TORSIONAL INSTABILITIES AND NON-LINEAR OSCILLATION OF
A SYSTEM INCORPORATING A HOOKE'S JOINT

S. I. CHANG

Department of Environmental Engineering, ;niversity of Seoul, 90 Jeonnong-dong,
Dongdaemun-gu, Seoul 130-743, Korea

(Received 6 March 1998, and in ,nal form 28 June 1999)
1. INTRODUCTION

Hooke's joint is a commonly used element in drive trains to transmit twisting
moment from an input shaft to an output shaft. The kinematic relation between the
input and output angles induces periodically varying velocity ratios and it is known
that this can cause violent torsional oscillations of the torsionally #exible shafts
within certain ranges of rotating speed.

For the prediction of such critical speed ranges a one-degree-of-freedom model
was considered by Porter [1]. The non-linear governing equation was derived and
linearized to the equation with time-varying coe$cients. Floquet theory [2]
was applied to the equation to obtain the stability map. It was shown that when
the ratio of the natural frequency of the straightened system (i.e., the system
when Hooke's joint angle is zero) to the input rotating speed is integral or
nearly integral, such critical speed ranges exist. He also found that Hooke's joint
angle and the ratio of the input and output shafts determine the widths of these
speed ranges.

Porter and Gregory [3] applied the classical method of Krylo! and Bogoliubo!
[4] to the original non-linear equation of motion for the prediction of the
amplitude of the oscillations. A set of the equations for the amplitude and phase of
limit cycle was obtained in terms of Bessel functions of the "rst kind. It was shown
that multiple limit cycles may exist at a speci"c input rotating speed and that an
appropriate shock may induce a shift from one limit cycle to the other limit cycle
which may have larger amplitude of the oscillation.

In the present work, the non-linear equation of motion in Porter [1] is revisited.
Based on Floquet theory, the higher order stability map for the damped
system is obtained by using a perturbation technique. By proper rescalings and
transformations of the variables and parameters, the equation of motion in the
so-called standard form [5] is obtained. The application of higher order averaging
[6] to this equation of motion produces the amplitude equations in truncated form.
The amplitude equations consist of a "nite number of terms including quadratic
and cubic non-linearities. The steady state response diagrams produced by the
amplitude equations show that multiple stable solutions co-exist and that jump
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phenomena [2] can occur. The amplitude equations are used to determine the
basins of attraction of the stable solutions.

2. EQUATION OF MOTION

As shown in Figure 1, the system under investigation consists of a rigid body of
moment of inertia, I, which is driven through a Hooke's joint and two torsionally
#exible shafts. The shafts are uniform along the length and the constant torsional
sti!nesses of the input and output shafts are s

1
and s

2
respectively. The input

angular velocity, X, is kept constant. The input and output angles of the joint are
a and b respectively. It is assumed that the source of energy loss of the system is the
viscous damping, c, exerted on the rotating body, I. The angle of rotation of the
rigid body, I, is h. The angular misalignment, j of the two shafts, is assumed to be
small. No lateral vibration is possible with ideal long bearings.

The dimensionless equation of motion for the relative torsional displacement, i.e.,
the twist of the input shaft, is given in Porter and Gregory [3] as follows:

xK#K2x#2lK (xR #o)

#e[M(o!3
2
)cos(2x#2q)!3

2
NxK

!o(xR #1)2sin(2x#2q)

#M(1!o)xK sin(2x#2q)#2(1!o)(xR #1)2cos(2x#2q)

!3
2
K2(1#cos(2x#2q))Nx

#2(1!o)xR (xR #1)sin(2x#2q)]"0, (1)
Figure 1. Diagram of the system.
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where the dot represents di!erentiation with respect to q, which is equal to Xt. The
x is the relative torsional displacement of the input shaft, a!q. The K is de"ned as
the ratio of linear natural frequency u"Js

1
s
2
/I(s

1
#s

2
) , and input angular

velocity, X. The o is the ratio of the output shaft sti!ness, s
2
, and the sti!ness of the

whole linear system, s
1
#s

2
. The e has been set to sin2 j, and l is c/2uI.

Expanding equation (1) about x"0 in Taylor series and performing appropriate
algebra can convert the equation into the form xK#f (x, xR , t)"0 as follows:

xK#K2x#2lK (xR #o)

#e[!o sin(2q)!4xo cos(2q)#2xR sin(2q)

#2xR 2 sin(2q)#6ox2 sin(2q)

!2x3K2 cos(2q)!8oxxR 2 cos(2q)#2]"0. (2)

As shown in equation (2), the system has the linear and non-linear parametric
and external excitations. The excitations are inherent due to the Hooke's joint and
the misalignment of the two shafts. As shown in equation (2), parametric resonances
can occur for the cases, K+1, 2, 3, 4,2, [7]. Among them, the cases, K+1 and
K+2 which correspond to the principal and secondary parametric resonances,
respectively, are considered. When K+1, the principal parametric resonance will
play an important role in determining the response of the system, but when K+2,
the resonance due to the external excitation as well as the secondary parametric
resonance will give signi"cant contribution to the response of the system. It is noted
that e and o play the roles of the amplitudes of the various external and parametric
excitations.

3. ANALYSIS

Based on Floquet theory, the method of strained parameters [2] is used to obtain
the transition curves in the stability map. Then the method of averaging is applied
to get amplitude equations of motion, from which steady state constant solutions
are obtained. The procedures for higher order averaging can be found in reference
[6], which this analysis follows closely.

3.1. PARAMETRIC INSTABILITIES

The problem of dynamic stability of parametrically excited system has been
studied extensively [2, 7]. The stability map in parameter space can be constructed
by utilizing Floquet theory. As noted in the previous section, the present system has
the parametric and external excitations simultaneously. In order to study the
dynamic instability due to the parametric resonance, the original equation of
motion, equations (1) or (2), is linearized to the form xK#f (t)x#g(t)xR "F(t) and
the corresponding homogeneous system xK#f (t)x#g (t)xR "0 is used for the study
of the parametric instabilities. The method of strained parameters [2] is used to
obtain explicit expressions for the transition curves of the stability map.
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When K+1, the variables and parameters in equation (2) are rescaled as

x"ez, l"ek. (3)

Then equation (2) is converted to

zK#K2z#2kKo!osin(2q)#O(e)"0. (4)

Applying a transformation

z"y#
o

K2!22
sin 2q!

2ko
K

, (5)

where y is assumed to have the period, 2n, to the linearized form of equation (4)
gives

yK#f
1

(q, K, o, k, e)y#g
1
(q, K, o, k, e)yR "F

1
(q, K, o, k, e), (6)

where f
1
( ) ), g

1
( ) ) and F

1
( ) ) are functions of q, K, o, k and e and their lengthy

expressions are not given here. Now the method of strained parameters is applied
to equation (6) with F

1
(q, K,o, k, e)"0 to give the transition curve as follows:

K2"12$1
2
e(o2!16k2)1@2

#e2M 1
32

(7o2#56o!32!64k2)$3
4
(o2!16k2)1@2N

#O (e3). (7)

From equation (7), it is easily seen that K2 in equation (7) is real only
if o2!16k2*0. Since we assume positive damping, in terms of the original
parameters it implies l)1

4
eo for the parametric instability.

When K+2, the variables and parameters in equation (2) are rescaled as

x"ez, l"e2k. (8)

Then equation (2) becomes

zK#f
2

(q, K, o, k, e)z#g
2
(q, K, o, k, e)zR"F

2
(q, K, o, k, e), (9)

where f
2
( ) ), g

2
( ) ) and F

2
( ) ) are functions of q, K, o, k and e and their lengthy

expressions are not given here. Again the method of strained parameters is applied
to equation (9) with F

2
(q, K,o, k, e)"0 to give the transition curve as follows:

K2"22

#e2[1
6
(o2#18o!6)$1

4
M(3o2!6o!2)2!1024k2N1@2]

#O (e3). (10)



Figure 2. Stability map for l"0)01 and o"0)25, 0)50 and 1)0.
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Similarly as for K+1, from equation (10), it is easily seen that K2 in equation (10)
is real only if the argument inside the square root symbol is positive. Since we
assume positive damping, in terms of the original parameters it implies l)
1
32

e2(3o2!6o!2) for the parametric instability. The stability map obtained from
equations (7) and (10) are shown in Figure 2, where the curves are plotted for
l"0)01 and the various values of o. As shown in Figure 2, increasing the value of
o has a destabilizing e!ect on the torsional motion of the input shaft.

3.2. HIGHER ORDER AVERAGING

As pointed out in the previous section, when K+1, the response of this system is
decided mainly by the primary parametric resonance. The variables and
parameters in equation (2) are rescaled with the small parameter e as in equation (3),
and an external detuning parameter, p, is introduced as follows:

K2"12#ep. (11)

Then equation (2) becomes

zK#z!o sin(2q)#2ko

#eFM
1
(z, q)#e2FM

2
(z, q)#e3FM

3
(z, q)#O(e4)"0, (12)
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where FM
i
's include various linear and non-linear terms.

By letting x
1
"z, x

2
"zR , we can express equation (12) in vector form as follows:

XQ "AX#Q
e
#e fM

1
#e2 fM

2
#e3 fM

3
#O (e4), (13)

where
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x
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1
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2
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0
!FM

2
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3
"A

0
!FM

3
B .

Let

X"eAq>#QM
e
, (14)

where

QM
e
"A

!1
3
o sin(2q)!2ko

!2
3
o cos(2q) B ,

and

>"A
y
1

y
2
B.

By the transformation (14), the response z has been assumed to be in the form of

z"y
1
cos q#y

2
sin q!1

3
o sin 2q!2ko , (15)

which implies that the input shaft oscillates around the static twist !2ko. It is
noted that the amount of the static twist is increased by increasing damping or the
value of o.

Transforming equation (13) via equation (14) gives the equation in the standard
form as follows:

>Q "egN
1
(>, q)#e2gN

2
(>, q)#e3gN

3
(>, q)#O (e4), (16)

where gN
i
(>, q)"e~Aq fM

i
(>, q). By applying the method of higher order averaging

[6] to equation (16), we can obtain a set of averaged equations as follows:

y@
1
"A

1
y
1
#A

2
y
2
#A

3
y2
1
#A

4
y2
2
#A

5
y
1
y
2
#A

6
y3
2
#A

7
,

y@
2
"B

1
y
1
#B

2
y
2
#B

3
y2
1
#B

4
y2
2
#B

5
y
1
y
2
#B

6
y3
1
#B

7
, (17)



Figure 3. Response diagram ( D>D versus p) for K+1, l"0)01, o"0)6, and e"0)19.
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where y@
i
's represent the rate of change of y

i
with respect to q8 "eq. The coe$cients

A
i
's and B

i
's in equation (17) are the functions of the parameters, e, k and o and their

lengthy expressions are not presented here. With the rescalings of equation (3), the
non-linearities of the "rst and second order in equation (16) are diminished through
the averaging process. Therefore, the non-linearities of system (1) can be captured
by averaging up to the third order.

Representative response diagrams of equilibrium points of equations (17) are
shown in Figure 3, where D> D is de"ned as (y2

1
#y2

2
)1@2 and the solid and broken

lines represent stable and unstable solutions respectively. As shown in Figure 3,
multiple stable solutions co-exist and jump phenomena can occur. The
corresponding phase plot in Figure 4 shows four saddles (points a}d) and three
spiral sinks (points e}g) with approximate stable and unstable manifolds. The
basins of attraction for the three spiral sinks are determined by the stable manifolds
of the saddle points. With the initial conditions outside the boundary consisting of
the stable manifolds for the saddle points c and d, in"nite responses are obtained
from the averaged equations.

As noted earlier, when K+2, the response of the system is decided by the
external resonance and the secondary parametric resonance. In order to consider
both e!ects simultaneously we rescale the variables and parameters in equation (2)
as equation (8) and

o"ed. (18)

An external detuning parameter, p, is introduced as follows:

K2"22#ep. (19)
Then equation (2) becomes

zK#22z#eFI
1
(z, q)#e2FI

2
(z, q)#e3FI

3
(z, q)#O(e4)"0, (20)

where FI
i
's include various linear and non-linear terms.



Figure 4. Phase plot for K+1, l"0)01, o"0)6, e"0)19 and p"0)1.
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Similarly, as for the case K+1, by letting x
1
"z, x

2
"zR , we can express

equation (20) in vector form as follows:

XQ "AI X#e fI
1
#e2 fI

2
#e3 fI

3
#O(e4), (21)

where
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3
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0
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3
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X"eA3 q>, (22)
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>"A
y
1

y
2
B.

By the transformation (22), the response z has been assumed to be in the form of

z"y
1
cos 2q#y

2
sin 2q , (23)



Figure 5. Response diagram ( D>D versus p) for K+2, l"2)0]10~4, o"0)5, and e"5)0]10~2.
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where it is noted that dissimilarly as in the case of K+1, no static twist is assumed
to exist. Transforming equation (21) via equation (22) gives the equation in the
standard form as follows:

>Q "egJ
1
(>, q)#e2gJ

2
(>, q)#e3gJ

3
(>, q)#O (e4), (24)

where gJ
i
(>, q)"e~A

3 q fI
i
(>, q). By applying the method of higher order averaging to

equation (24), we can obtain a set of averaged equations as follows:
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4
, (25)

where the prime denotes the di!erentiation with respect to q8 "eq. The coe$cients
AI

i
's and BI

i
's in equation (25) are also functions of the parameters, e, k and d and

their lengthy expressions are not presented here. It is noted that the system (25) has
quadratic non-linearities only. Those can be obtained by averaging up to the third
order.

Representative response diagram of equilibrium points of equations (25) are
shown in Figure 5. The corresponding phase plot in Figure 6 shows two saddles
(points a and b) and two sprial sinks (points c and d) with the stable and unstable
manifolds. Similarly as in the case of K+1, the basins of attraction are determined
by the stable manifolds of the saddle points.

4. CONCLUSIONS

The original complex non-linear system has the inherent parametric as well as
external excitations. When the rotating speed is close to the linear natural
frequency, the primary parametric resonance can occur. When the rotating speed is



Figure 6. Phase plot for K+2, l"2)0]10~4, o"0)5, e"5)0]10~2 and p"0)2.

1002 LETTERS TO THE EDITOR
close to half of the linear natural frequency, the external and secondary parametric
resonances can occur simultaneously. By using the method of strained parameters,
the higher order stability map for the damped system is obtained from the
linearized model. The ratio of the sti!ness of the input shaft to that of the output
shaft is one of the factors that determine the parametric instability region in the
map. The truncated amplitude equations of motion are obtained by applying the
method of higher order averaging to the non-linear system. By plotting the
averaged responses in phase plane, the basins of attraction are determined.
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